Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 222]
|
|
Сложность: 5 Классы: 8,9,10
|
Периметр треугольника $ABC$ равен 1. Окружность $\omega$ касается стороны $BC$, продолжения стороны $AB$ в точке $P$ и продолжения стороны $AC$ в точке $Q$. Прямая, проходящая через середины $AB$ и $AC$, пересекает описанную окружность треугольника $APQ$ в точках $X$ и $Y$. Найдите длину отрезка $XY$.
|
|
Сложность: 5+ Классы: 10,11
|
В усеченную треугольную пирамиду вписана сфера, касающаяся оснований в точках $T_1$, $T_2$. Пусть $h$ – высота пирамиды, $R_1$, $R_2$ – радиусы окружностей, описанных около ее оснований, $O_1$, $O_2$ – центры этих окружностей. Докажите, что
$$
R_1R_2h^2=(R_1^2-O_1T_1^2)(R_2^2-O_2T_2^2).
$$
|
|
Сложность: 6 Классы: 10,11
|
Пусть $ABC$ – треугольник Понселе, точка $A_1$ симметрична $A$ относительно центра вписанной окружности $I$, точка $A_2$ изогонально сопряжена $A_1$ относительно $ABC$. Найдите ГМТ $A_2$.
|
|
Сложность: 6 Классы: 10,11
|
На плоскости дано конечное множество точек
X и
правильный треугольник
T . Известно, что любое подмножество
X'
множества
X , состоящее из не более
9
точек, можно покрыть
двумя параллельными переносами треугольника
T . Докажите, что
все множество
X можно покрыть двумя параллельными переносами
T .
В угол с вершиной A вписана окружность, касающаяся сторон угла в точках B и C. В области, ограниченной отрезками AB, AC и меньшей дугой BC, расположен отрезок. Докажите, что его длина не превышает AB.
Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 222]