ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Постройте треугольник ABC, зная три точки A', B', C', симметричные точке пересечения высот треугольника относительно сторон BC, CA, AB (оба треугольника остроугольные).

Вниз   Решение


Докажите неравенство для положительных значений переменных:
+ .

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 225]      



Задача 108196

Темы:   [ Гомотетия помогает решить задачу ]
[ Три точки, лежащие на одной прямой ]
[ Признаки и свойства касательной ]
[ Вписанный угол, опирающийся на диаметр ]
[ Две касательные, проведенные из одной точки ]
Сложность: 5
Классы: 9,10,11

Автор: Купцов Л.

Даны полуокружность с диаметром AB и центром O и прямая, пересекающая полуокружность в точках C и D, а прямую AB – в точке M  (MB < MA,
MD < MC
).  Пусть K – отличная от O точка пересечения описанных окружностей треугольников AOC и DOB. Докажите, что угол MKO – прямой.

Прислать комментарий     Решение

Задача 108205

Темы:   [ Гомотетия помогает решить задачу ]
[ Касающиеся окружности ]
[ Композиции гомотетий ]
Сложность: 5
Классы: 9,10,11

Каждая из окружностей S1 , S2 и S3 касается внешним образом окружности S (в точках A1 , B1 и C1 соответственно) и двух сторон треугольника ABC (см.рис.). Докажите, что прямые AA1 , BB1 и CC1 пересекаются в одной точке.
Прислать комментарий     Решение


Задача 78673

Темы:   [ Гомотетия помогает решить задачу ]
[ Задачи на движение ]
[ Метод координат на плоскости ]
Сложность: 5+
Классы: 8,9

Ковбой Джимми поспорил с друзьями, что сумеет одним выстрелом пробить все четыре лопасти вертилятора. (Вертилятор устроен следующим образом: на оси, вращающейся со скоростью 50 об/сек, расположены на равных расстояниях друг от друга четыре полудиска, повернутые друг относительно друга под какими-то углами). Джимми может стрелять в любой момент и добиваться произвольной скорости пуль. Доказать, что Джимми выиграет пари.

Прислать комментарий     Решение

Задача 66803

Темы:   [ Гомотетия помогает решить задачу ]
[ Проектирование (прочее) ]
Сложность: 5+
Классы: 9,10,11

Четырехугольник $ABCD$, вписанный в окружность $\omega$, таков что $AD=BD=AC$. Точка $P$ движется по $\omega$. Прямые $AP$ и $DP$ пересекают прямые $CD$ и $AB$ в точках $E$ и $F$ соответственно. Прямые $BE$ и $CF$ пересекаются в точке $Q$. Найдите геометрическое место точек $Q$.
Прислать комментарий     Решение


Задача 57037

Темы:   [ Гомотетия помогает решить задачу ]
[ Подобные фигуры ]
[ Симметрия помогает решить задачу ]
[ Четырехугольники (прочее) ]
Сложность: 5+
Классы: 8,9,10

Из вершин выпуклого четырехугольника опущены перпендикуляры на диагонали. Докажите, что четырехугольник, образованный основаниями перпендикуляров, подобен исходному четырехугольнику.
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 225]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .