Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 222]
|
|
Сложность: 5 Классы: 9,10,11
|
Окружности
σ 1 и
σ 2 пересекаются в точках
A и
B . В точке
A к
σ 1 и
σ 2 проведены
соответственно касательные
l1 и
l2 .
Точки
T1 и
T2 выбраны соответственно на окружностях
σ 1 и
σ 2
так, что угловые меры дуг
T1A и
AT2 равны (величина дуги окружности считается по часовой стрелке).
Касательная
t1 в точке
T1 к окружности
σ 1 пересекает
l2 в точке
M1 .
Аналогично, касательная
t2 в точке
T2 к окружности
σ 2 пересекает
l1 в точке
M2 .
Докажите, что середины отрезков
M1M2 находятся на одной прямой,
не зависящей от положения точек
T1 ,
T2 .
|
|
Сложность: 5 Классы: 8,9,10
|
Дан треугольник
ABC и линейка, на которой отмечены два
отрезка, равные
AC и
BC . Пользуясь только этой линейкой,
найдите центр вписанной окружности треугольника, образованного
средними линиями
ABC .
|
|
Сложность: 5 Классы: 9,10,11
|
B треугольнике ABC точка O –
центр описанной окружности. Прямая a проходит через
середину высоты треугольника, опущенной из вершины
A, и параллельна OA. Aналогично определяются прямые b и c.
Докажите, что эти три прямые пересекаются в одной точке.
|
|
Сложность: 6- Классы: 9,10,11
|
Рассмотрим 5 точек
A,
B,
C,
D,
E так что
ABCD - параллелограмм,
BCED лежат на одной окружности.
A ∈
l, прямая
lпересекает внутренность [
DC] в
F и прямую
BC в
G. Пусть
EF =
EG =
EC.
Доказать, что
l - биссектриса угла
DAB.
|
|
Сложность: 6- Классы: 8,9,10,11
|
Окружность
σ касается равных сторон
AB и
AC равнобедренного
треугольника
ABC и пересекает сторону
BC в точках
K и
L .
Отрезок
AK пересекает
σ второй раз в точке
M . Точки
P и
Q симметричны точке
K относительно точек
B и
C соответственно.
Докажите, что описанная окружность треугольника
PMQ касается
окружности
σ .
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 222]