ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что при удалении любого ребра из дерева оно превращается в несвязный граф. ![]() ![]() Используя разложение (1 + i)n по формуле бинома Ньютона, найдите: б) ![]() ![]() ![]() Прямая a параллельна плоскости α . Прямая b , параллельная прямой a , проходит через точку M плоскости α . Докажите, что прямая b лежит в плоскости α . ![]() ![]() ![]() Докажите равенство (Fn, Fm) = F(m, n). ![]() ![]() |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 95]
На продолжении стороны AB за точку B треугольника ABC
отложен отрезок AD, причём
AD : AB =
Дан треугольник ABC, площадь которого равна 2. На медианах AK, BL и CN треугольника ABC взяты соответственно точки P, Q и R так, что AP : PK = 1, BQ : QL = 1 : 2, CR : RN = 5 : 4. Найдите площадь треугольника PQR.
На сторонах выпуклого четырёхугольника ABCD, площадь которого равна 2, взяты точки: K на AB, L на BC, M на CD, N на AD. При этом AK : KB = 2, BL : LC = 1 : 3, CM : MD = 1, DN : NA = 1 : 5. Найдите площадь шестиугольника AKLCMN.
В треугольнике со сторонами a, b и c проведены биссектрисы,
точки пересечения которых с противолежащими сторонами являются
вершинами второго треугольника. Докажите, что отношение площадей
этих треугольников равно
В трапеции ABCD (
BC
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 95] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |