ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 95]      



Задача 53271

Темы:   [ Отношения площадей ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC на сторонах AB и AC выбраны соответственно точки B1 и C1, причём AB1 : AB = 1 : 3 и AC1 : AC = 1 : 2. Через точки A, B1 и C1 проведена окружность. Через точку B1 проведена прямая, пересекающая отрезок AC1 в точке D, а окружность — в точке E. Найдите площадь треугольника B1C1E, если AC1 = 4, AD = 1, DE = 2, а площадь треугольника ABC равна 12.

Прислать комментарий     Решение


Задача 53272

Темы:   [ Отношения площадей ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC на сторонах AB и BC выбраны соответственно точки A1 и C1, причём A1B : AB = 1 : 2 и BC1 : BC = 1 : 4. Через точки A1, B и C1 проведена окружность. Через точку A1 проведена прямая, пересекающая отрезок BC1 в точке D, а окружность в точке E. Найдите площадь треугольника A1C1E, если BC1 = 6, BD = 2, DE = 3, а площадь треугольника ABC равна 32.

Прислать комментарий     Решение


Задача 64916

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Теоремы Чевы и Менелая ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4
Классы: 9,10

В выпуклом четырёхугольнике ABCD  O – точка пересечения диагоналей, а M – середина стороны BC. Прямые MO и AD пересекаются в точке E. Докажите, что  AE : ED = SABO : SCDO.

Прислать комментарий     Решение

Задача 110949

Темы:   [ Отношение объемов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4
Классы: 8,9

Вершина S пирамиды SABC находится на расстоянии 4 от центра сферы радиуса 1, которая проходит через точки A , B и C и пересекает ребра SA , SB , SC соответственно в точках A1 , B1 , C1 . Отношение длин отрезков B1C1 и BC равно , отношение площадей треугольников SA1B1 и SAB равно , а отношение объёмов пирамид SA1B1C1 и SABC равно . Найдите длины отрезков SA1 , SB1 , SC1 .
Прислать комментарий     Решение


Задача 110950

Темы:   [ Отношение объемов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4
Классы: 8,9

Точки A , B , C , D , E , F лежат на сфере радиуса . Отрезки AD , BE и CF пересекаются в точке S , находящейся на расстоянии 1 от центра сферы. Объёмы пирамид SABC и SDEF относятся как 1:9, пирамид SABF и SDEC – как 4:9, пирамид SAEC и SDBF – как 9:4. Найдите отрезки SA , SB , SC .
Прислать комментарий     Решение


Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 95]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .