Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 43]
|
|
Сложность: 3 Классы: 7,8,9
|
Построить такой равнобедренный треугольник, чтобы периметр всякого вписанного в него прямоугольника (две вершины которого лежат на основании треугольника) был постоянный.
Большой треугольник разбит тремя жирными отрезками на четыре треугольника и три четырёхугольника. Сумма периметров четырёхугольников равна 25 см. Сумма
периметров четырёх треугольников равна 20 см. Периметр исходного большого треугольника равен 19 см. Найдите сумму длин жирных отрезков.
Каждая из трёх прямых, параллельных сторонам и проходящих через центр вписанной окружности треугольника, отсекают от него некоторый треугольник. Докажите, что сумма периметров отсечённых треугольников вдвое больше периметра исходного треугольника.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Через каждую вершину неравнобедренного треугольника ABC проведён отрезок, разбивающий его на два треугольника с равными периметрами.
Верно ли, что все эти отрезки имеют разные длины?
|
|
Сложность: 2+ Классы: 8,9,10
|
Пусть O – точка пересечения диагоналей выпуклого четырёхугольника ABCD.
Докажите, что если равны периметры треугольников ABO, BCO, CDO, DAO, то ABCD – ромб.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 43]