ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 62]      



Задача 111723

Темы:   [ Неравенства с площадями ]
[ Формула Герона ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Теорема косинусов ]
Сложность: 5-
Классы: 9,10

Докажите, что для треугольника со сторонами a , b , c и площадью S выполнено неравенство

a2+b2+c2- (|a-b|+|b-c|+|c-a|)2 4 S.

Прислать комментарий     Решение

Задача 111523

Темы:   [ Касающиеся окружности ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Формула Герона ]
Сложность: 3
Классы: 8,9

Даны две окружности радиусов R и r ( R>r ), имеющие внутреннее касание. Найдите радиус третьей окружности, касающейся первых двух окружностей и их общего диаметра.
Прислать комментарий     Решение


Задача 54261

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема Пифагора (прямая и обратная) ]
[ Формула Герона ]
Сложность: 3+
Классы: 8,9

Параллельные стороны трапеции равны 25 и 4, а непараллельные – 20 и 13. Найдите высоту трапеции.

Прислать комментарий     Решение

Задача 102209

Темы:   [ Гомотетия помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Формула Герона ]
Сложность: 3+
Классы: 8,9

В треугольник ABC со сторонами  AB = 6,  BC = 5,  AC = 7  вписан квадрат, две вершины которого лежат на стороне AC, одна на стороне AB и одна на стороне BC. Через середину D стороны AC и центр квадрата проведена прямая, которая пересекается с высотой BH в точке M. Найдите площадь треугольника DMC.

Прислать комментарий     Решение

Задача 111448

Темы:   [ Площадь трапеции ]
[ Вспомогательные подобные треугольники ]
[ Формула Герона ]
Сложность: 3+
Классы: 8,9

В трапеции основания равны 84 и 42, а боковые стороны – 39 и 45. Через точку пересечения диагоналей параллельно основаниям проведена прямая.
Найдите площади получившихся трапеций.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 62]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .