ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

а) Докажите равенство  

б) Вычислите суммы  

Вниз   Решение


Ключом шифра, называемого "поворотная решетка", является трафарет, изготовленный из квадратного листа клетчатой бумаги размера n×n
(n чётно). Некоторые из клеток вырезаются. Одна из сторон трафарета помечена. При наложении этого трафарета на чистый лист бумаги четырьмя возможными способами (помеченной стороной вверх, вправо, вниз, влево) его вырезы полностью покрывают всю площадь квадрата, причём каждая клетка оказывается под вырезом ровно один раз. Буквы сообщения, имеющего длину n², последовательно вписываются в вырезы трафарета, сначала наложенного на чистый лист бумаги помеченной стороной вверх. После заполнения всех вырезов трафарета буквами сообщения трафарет располагается в следующем положении и т. д. После снятия трафарета на листе бумаги оказывается зашифрованное сообщение.
Найдите число различных ключей для произвольного чётного числа n.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 62]      



Задача 54300

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Формула Герона ]
Сложность: 4-
Классы: 8,9

В треугольник вписана окружность радиуса 4. Одна из сторон треугольника разделена точкой касания на части, равные 6 и 8. Найдите две другие стороны треугольника.

Прислать комментарий     Решение


Задача 109515

Темы:   [ Целочисленные треугольники ]
[ Простые числа и их свойства ]
[ Формула Герона ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Автор: Митькин Д.

Длины сторон треугольника – простые числа. Докажите, что его площадь не может быть целым числом.

Прислать комментарий     Решение

Задача 54456

Темы:   [ Биссектриса угла (ГМТ) ]
[ Отношение, в котором биссектриса делит сторону ]
[ Формула Герона ]
Сложность: 4
Классы: 8,9

На биссектрисе острого угла AOC взята точка B. Через точку B проведена прямая, перпендикулярная к OB и пересекающая сторону AO в точке K, а сторону OC – в точке L. Через точку B проведена еще одна прямая, пересекающая сторону AO в точке M (M – между O и K), сторону OC — в точке N, причём так, что  ∠MON = ∠MNO.  Известно, что  MK = a,  LN = 3a/2.  Найдите площадь треугольника MON.

Прислать комментарий     Решение

Задача 54928

Темы:   [ Треугольник (экстремальные свойства) ]
[ Отношение, в котором биссектриса делит сторону ]
[ Формула Герона ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9,10

В треугольнике ABC со стороной AC = 8 проведена биссектриса BL. Известно, что площади треугольников ABL и BLC относятся как 3 : 1. Найдите биссектрису BL, при которой высота, опущенная из вершины B на основание AC, будет наибольшей.

Прислать комментарий     Решение


Задача 61170

Темы:   [ Геометрические интерпретации в алгебре ]
[ Многочлены (прочее) ]
[ Формула Герона ]
[ Неравенства для площади треугольника ]
Сложность: 4
Классы: 10,11

Пусть x, y, z – положительные числа и  xyz(x + y + z) = 1.  Найдите наименьшее значение выражения  (x + y)(x + z).

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 62]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .