Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 316]
|
|
Сложность: 3+ Классы: 9,10,11
|
В одной из вершин шестиугольника лежит золотая монета, а в остальных ничего не лежит. Кощей Бессмертный чахнет над златом и каждое утро снимает с одной вершины произвольное количество монет, после чего тут же кладёт на соседнюю вершину в шесть раз больше монет. Если к исходу какого-то дня во всех вершинах будет поровну монет, Кощей станет Властелином Мира. Докажите, что хоть злата у него сколько угодно, но Властелином Мира ему не бывать.
В трёх клетках клетчатого листа записаны числа, а остальные клетки пусты. Разрешается выбрать два числа из разных непустых клеток и записать в пустую клетку их сумму; также можно выбрать числа а, b, c из трёх разных непустых клеток и записать в пустую клетку число ab + с². Докажите, что при помощи нескольких таких операций можно записать в одну из клеток квадрат суммы трёх исходных чисел (какими бы они ни были).
|
|
Сложность: 3+ Классы: 5,6,7,8
|
Имеется набор из двух карточек: и . За одну операцию разрешается составить выражение, использующее числа на карточках, арифметические действия, скобки. Если его значение – целое неотрицательное число, то его выдают на новой карточке. (Например, имея карточки , и , можно составить выражение : и получить карточку или составить выражение и получить карточку .)
Как получить карточку с числом 2015 а) за 4 операции; б) за 3 операции?
|
|
Сложность: 3+ Классы: 8,9,10
|
После просмотра фильма зрители по очереди оценивали фильм целым числом
баллов от 0 до 10. В каждый момент времени рейтинг фильма вычислялся как сумма всех выставленных оценок, делённая на их количество. В некоторый момент времени T рейтинг оказался целым числом, а затем с каждым новым проголосовавшим зрителем он уменьшался на единицу. Какое наибольшее количество зрителей могло проголосовать после момента T?
|
|
Сложность: 3+ Классы: 9,10,11
|
В окружность вписан неправильный многоугольник. Если вершина A разбивает дугу, заключенную между двумя другими вершинами, на две неравные части, то такая вершина A называется неустойчивой. Каждую секунду какая-нибудь неустойчивая вершина перепрыгивает в середину своей дуги. В результате каждую секунду образуется новый многоугольник. Докажите, что сколько бы секунд ни прошло, многоугольник никогда не будет равным исходному.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 316]