Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 316]
|
|
Сложность: 4 Классы: 9,10,11
|
В сейфе n ячеек с номерами от 1 до n. В каждой ячейке первоначально лежала карточка с её номером. Вася переложил карточки в некотором порядке так, что в i-й ячейке оказалась карточка с числом ai. Петя может менять местами любые две карточки с номерами x и y, платя за это 2|x – y| рублей. Докажите, что Петя сможет вернуть все карточки на исходные места, заплатив не более |a1 – 1| + |a2 – 2| + ... + |an – n| рублей.
|
|
Сложность: 4 Классы: 7,8,9
|
Чётное число орехов разложено на три кучки. За одну операцию можно переложить половину орехов из кучки с чётным числом орехов в любую другую кучку. Докажите, что, как бы орехи ни были разложены изначально, такими операциями можно в какой-нибудь кучке собрать ровно половину всех орехов.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В некотором государстве сложение и вычитание обозначаются знаками "!" и "?", но вам неизвестно, какой знак какой операции соответствует. Каждая операция применяется к двум числам, но про вычитание вам неизвестно, вычитается левое число из правого или правое из левого. К примеру, выражение $a?b$ обозначает одно из следующих: $a - b, b - a$ или $a + b$. Вам неизвестно, как записываются числа в этом государстве, но переменные $a, b$ и скобки есть и используются как обычно. Объясните, как с помощью них и знаков "!", "?" записать выражение, которое гарантированно равно $20a - 18b$.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Изначально на белой клетчатой плоскости конечное число клеток окрашено в чёрный цвет. На плоскости лежит бумажный клетчатый многоугольник $M$, в котором больше одной клетки. Его можно сдвигать, не поворачивая, в любом направлении на любое расстояние, но так, чтобы после сдвига он лежал "по клеткам". Если после очередного сдвига ровно одна клетка у $M$ лежит на белой клетке плоскости, эту белую клетку окрашивают в чёрный цвет и делают следующий сдвиг. Докажите, что существует такая белая клетка, которая никогда не будет окрашена в чёрный цвет, сколько бы раз мы ни сдвигали $M$ по описанным правилам.
|
|
Сложность: 4 Классы: 8,9,10,11
|
На доске написана буква А. Разрешается в любом порядке и количестве:
а) приписывать А слева;
б) приписывать Б справа;
в) одновременно приписывать Б слева и А справа.
Например, БААБ так получить можно (A → БAA → БААБ), а АББА – нельзя. Докажите, что при любом натуральном $n$ половину слов длины $n$ получить можно, а другую половину – нельзя.
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 316]