Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 202]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Перемножили несколько натуральных чисел и получили 224, причём самое маленькое число было ровно вдвое меньше самого большого.
Сколько чисел перемножили?
|
|
Сложность: 3 Классы: 10,11
|
Школьник едет на олимпиаду на метро, платит рубль и получает сдачу. Доказать,
что если он обратно поедет на трамвае, то он сможет уплатить за проезд
без сдачи. (Проезд в метро стоил 50 коп., в трамвае – 30 коп. В обращении находились монеты достоинством в 1, 2, 3, 5, 10, 15 и 20 коп.)
|
|
Сложность: 3 Классы: 9,10,11
|
Школьник едет на кружок на трамвае, платит рубль и получает сдачу. Доказать,
что если он обратно также поедет в трамвае, то он сможет уплатить за
проезд без сдачи. (
Примечание. Проезд в трамвае стоил 30
коп. В обращении находились монеты достоинством в 1, 2, 3, 5, 10, 15 и 20 коп.)
|
|
Сложность: 3 Классы: 9,10,11
|
Решить в натуральных числах систему
x + y = zt,
z + t = xy.
Даны пять различных положительных чисел, которые можно разбить на две группы
так, чтобы суммы чисел в этих группах были одинаковыми. Сколькими способами это
можно сделать?
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 202]