Страница:
<< 1 2 [Всего задач: 9]
Внутри выпуклого четырёхугольника расположены четыре
окружности, каждая из которых касается двух соседних сторон
четырёхугольника и двух окружностей (внешним образом). Известно,
что в четырёхугольник можно вписать окружность. Докажите, что по
крайней мере две из данных окружностей равны.
|
|
Сложность: 4- Классы: 8,9,10
|
В квадрате 10×10 расставлены числа от 1 до 100: в первой строчке – от 1 до 10 слева направо, во второй – от 11 до 20 слева направо и т.д. Андрей собирается разрезать квадрат на доминошки 1×2, посчитать произведение чисел в каждой доминошке и сложить полученные 50 чисел. Он стремится получить как можно меньшую сумму. Как ему следует разрезать квадрат?
Дан угол с вершиной O и внутри него точка A. Рассмотрим такие точки M, N на разных сторонах данного угла, что углы MAO и OAN равны.
Докажите, что все прямые MN проходят через одну точку (или параллельны).
|
|
Сложность: 5- Классы: 8,9,10,11
|
Дан четырёхугольник ABCD, противоположные стороны которого пересекаются в точках P и Q. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма.
Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей ABCD.
Страница:
<< 1 2 [Всего задач: 9]