Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 108]
|
|
Сложность: 5+ Классы: 10,11
|
На рёбрах произвольного тетраэдра выбрано по точке. Через каждую тройку точек,
лежащих на рёбрах с общей вершиной, проведена плоскость. Докажите, что если
три из четырёх проведённых плоскостей касаются вписанного в тетраэдр шара, то
и четвёртая плоскость также его касается.
|
|
Сложность: 3 Классы: 10,11
|
В прямоугольном параллелепипеде
ABCDA1B1C1D1
четыре числа – длины рёбер и диагонали AC1 – образуют
арифметическую прогрессию с положительной разностью d, причём AB <
AA1 < AD. Две внешне касающиеся друг друга сферы
одинакового неизвестного радиуса R расположены так, что их центры лежат
внутри параллелепипеда, причём первая сфера касается граней
ABB1A1, ADD1A1, ABCD,
а вторая – граней BCC1B1,
CDD1C1,
A1B1C1D1.
Найдите: а) длины рёбер параллелепипеда; б) угол между прямыми CD1 и
AC1; в) радиус R.
|
|
Сложность: 3 Классы: 10,11
|
В прямоугольном параллелепипеде
ABCDA1B1C1D1
четыре числа – длины рёбер и диагонали AC1 – образуют арифметическую
прогрессию с положительной разностью d, причём AD < AB <
AA1. Две внешне касающиеся друг друга сферы одинакового
неизвестного радиуса R расположены так, что их центры лежат внутри
параллелепипеда, причём первая сфера касается граней ABB1A1,
ADD1A1, ABCD, а вторая – граней
BCC1B1, CDD1C1,
A1B1C1D1. Найдите:
а) длины рёбер параллелепипеда; б) угол между прямыми CD1 и
AC1; в) радиус R.
|
|
Сложность: 3 Классы: 10,11
|
В прямоугольном параллелепипеде
ABCDA1B1C1D1
четыре числа – длины рёбер и диагонали AC1 –
образуют арифметическую прогрессию с положительной разностью d, причём
AA1 < AD < AB. Две внешне касающиеся
друг друга сферы одинакового неизвестного радиуса R расположены так,
что их центры лежат внутри параллелепипеда, причём первая сфера касается граней
ABB1A1, ADD1A1,
ABCD, а вторая – граней BCC1B1,
CDD1C1,
A1B1C1D1.
Найдите: а) длины рёбер параллелепипеда; б) угол между прямыми CD1
и AC1; в) радиус R.
|
|
Сложность: 3+ Классы: 10,11
|
Стороны AB, BC, CD, DA пространственного четырёхугольника ABCD касаются некоторой сферы в точках K, L, M, N соответственно.
Докажите, что точки K, L, M, N лежат в одной плоскости.
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 108]