Страница:
<< 1 2
3 4 5 >> [Всего задач: 23]
|
|
Сложность: 3 Классы: 10,11
|
На экране компьютера стоят в ряд 200 человек. На самом деле эта картинка составлена из 100 фрагментов, на каждом – пара: взрослый и ребёнок пониже ростом. Разрешается в каждом из фрагментов изменить масштаб, уменьшив при этом одновременно рост взрослого и ребёнка в одинаковое целое число раз (масштабы разных фрагментов можно менять независимо друг от друга). Докажите, что это можно сделать так, что на общей картинке все взрослые будут выше всех детей.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Даны две окружности, пересекающиеся в точках $A$, $B$, и точка $O$, лежащая вне их. Циркулем и линейкой постройте такой луч с началом $O$, пересекающий первую окружность в точке $C$, а вторую – в точке $D$, чтобы отношение $OC:OD$ было максимальным.
|
|
Сложность: 4- Классы: 8,9,10,11
|
В таблице 10×10 записано 100 различных чисел. За ход можно выбрать любой составленный из клеток прямоугольник и переставить все числа в нём симметрично относительно его центра ("повернуть прямоугольник на 180°"). Всегда ли за 99 ходов можно добиться, чтобы числа возрастали в каждой строке слева направо и в каждом столбце – снизу вверх?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Во вписанном пятиугольнике отметили середины четырех сторон, после чего сам пятиугольник стерли. Восстановите его.
В шаре радиуса 7 через точку
S проведены три равные хорды
AA1
,
BB1
и
CC1
так, что
AS = 8
,
A1
S = 3
,
BS >
B1
S ,
CS > C1
S . Найдите радиус сферы, описанной около пирамиды
SABC .
Страница:
<< 1 2
3 4 5 >> [Всего задач: 23]