Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 33]
|
|
Сложность: 3- Классы: 8,9,10
|
Точки M и N расположены соответственно на сторонах AB и AC треугольника ABC, причём AM : MB = 1 : 2, AN : NC = 3 : 2. Прямая MN пересекает продолжение стороны BC в точке F. Найдите CF : BC.
|
|
Сложность: 3 Классы: 8,9,10
|
На сторонах AB и BC треугольника ABC расположены точки M и N соответственно, причём AM : MB = 3 : 5, BN : NC = 1 : 4. Прямые CM и AN пересекаются в точке O. Найдите отношения OA : ON и OM : OC.
|
|
Сложность: 3 Классы: 8,9,10
|
На сторонах AB и AC треугольника ABC расположены точки N и M соответственно, причём AN : NB = 3 : 2, AM : MC = 4 : 5. Прямые BM и CN пересекаются в точке O. Найдите отношения OM : OB и ON : OC.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На гипотенузе $AB$ прямоугольного треугольника $ABC$ отметили точку $K$, а на катете $AC$ – точку $L$ так, что $AK = AC, BK = LC$. Отрезки $BL$ и $CK$ пересекаются в точке $M$. Докажите, что треугольник $CLM$ равнобедренный.
На плоскости расположены три окружности Ω1, Ω2, Ω3 радиусов r1, r2, r3 соответственно – каждая вне двух других, причём r1 > r2 и
r1 > r3. Из точки пересечения общих внешних касательных к окружностям Ω1 и Ω2 проведены касательные к окружности Ω3, а из точки пересечения общих внешних касательных к окружностям Ω1 и Ω3 проведены касательные к окружности Ω2. Докажите, что последние две пары
касательных образуют четырёхугольник, в который можно вписать окружность, и
найдите её радиус.
Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 33]