Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 150]
|
|
Сложность: 4 Классы: 9,10,11
|
Числовое множество
M , содержащее 2003 различных положительных числа, таково,
что для любых трех различных элементов
a,b,c из
M
число
a2
+bc рационально.
Докажите, что можно выбрать такое натуральное
n , что для любого
a
из
M число
a
рационально.
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
В классе каждый болтун дружит хотя бы с одним молчуном.
При этом болтун молчит, если в кабинете находится нечетное число его друзей
– молчунов.
Докажите, что учитель может пригласить на факультатив не менее половины
класса так, чтобы все болтуны молчали.
Можно ли раскрасить натуральные числа в 2009 цветов так, чтобы каждый цвет встречался бесконечное число раз, и не нашлось тройки чисел, покрашенных в
три различных цвета, таких, что произведение двух из них равно третьему?
На собрание пришло n человек (n > 1). Оказалось, что у каждых двух из них среди собравшихся есть ровно двое общих знакомых.
а) Докажите, что каждый из них знаком с одинаковым числом людей на этом собрании.
б) Покажите, что n может быть больше 4.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Некоторые из чисел 1, 2, 3, ..., $n$ покрашены в красный цвет так, что выполняется условие: если для красных чисел $a, b, c$ (не обязательно различных) $a(b - c)$ делится на $n$, то $b = c$.
Докажите, что красных чисел не больше чем φ($n$).
Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 150]