Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 150]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Обозначим через Pk,l(n) количество разбиений числа n на не более чем k слагаемых, каждое из которых не превосходит l.
Докажите равенства:
а) Pk,l(n) – Pk,l–1(n) = Pk–1,l(n – l);
б) Pk,l(n) – Pk–1,l(n) = Pk,l–1(n – k);
в) Pk,l(n) = Pl,k(n);
г) Pk,l(n) = Pk,l(kl – n).
|
|
Сложность: 3+ Классы: 8,9,10
|
а) Можно ли расположить пять деревянных кубов в пространстве так, чтобы
каждый имел общую часть грани с каждым? (Общая часть должна быть многоугольником.)
б) Тот же вопрос про шесть кубов.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Антон, Артем и Вера решили вместе 100 задач по математике. Каждый из них решил
60 задач. Назовем задачу трудной, если ее решил только один человек, и легкой,
если ее решили все трое. Насколько отличается количество трудных задач
от количества легких?
|
|
Сложность: 3+ Классы: 7,8,9
|
В коридоре длиной 100 метров постелено 20 ковровых дорожек общей длины
1000 метров. Каково может быть наибольшее число незастеленных кусков (ширина
дорожки равна ширине коридора)?
Сеть автобусных маршрутов в пригороде Амстердама устроена так, что:
а) на каждом маршруте есть ровно три остановки;
б) каждые два маршрута либо вовсе не имеют общих остановок, либо имеют только одну общую остановку.
Какое наибольшее количество маршрутов может быть в этом пригороде, если в нём всего 9 остановок?
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 150]