Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 204]
|
|
Сложность: 2+ Классы: 7,8,9,10
|
Каждую грань кубика разбили на четыре равных квадрата и раскрасили эти
квадраты в три цвета так, чтобы квадраты, имеющие общую сторону, были покрашены
в разные цвета. Докажите, что в каждый цвет покрашено по 8 квадратиков.
|
|
Сложность: 2+ Классы: 8,9,10
|
Можно ли покрасить четыре вершины куба в красный цвет и четыре другие – в синий так, чтобы плоскость, проходящая через любые три точки одного цвета, содержала точку другого цвета?
а) В каждой вершине куба написано число 1 или число 0. На каждой грани куба написана сумма четырёх чисел, написанных в вершинах этой грани. Может ли оказаться, что все числа, написанные на гранях, различны?
б) Тот же вопрос, если в вершинах написаны числа 1 или –1.
|
|
Сложность: 2+ Классы: 7,8,9
|
Представьте, что куб стоит на столе на одной своей вершине (так, что верхняя вершина расположена точно над нижней) и освещён прямо сверху. Какая в этом случае получается тень от куба?
Какое максимальное количество
фигурок 2*2*1 можно уложить в куб 3*3*3?
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 204]