Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 245]
В прямоугольный треугольник с катетами 6 и 8, вписан квадрат, имеющий с треугольником общий прямой угол. Найдите сторону квадрата.
|
|
Сложность: 3+ Классы: 10,11
|
Внутри угла AOD проведены лучи OB и OC, причём ∠AOB = ∠COD. В углы AOB и COD вписаны непересекающиеся окружности.
Докажите, что точка пересечения общих внутренних касательных к этим окружностям лежит на биссектрисе угла AOD.
В треугольнике АВС угол В равен 120°, АВ = 2ВС. Серединный перпендикуляр к стороне АВ пересекает АС в точке D. Найдите отношение AD : DC.
Пусть M – середина стороны BC треугольника ABC. Постройте прямую l, удовлетворяющую следующим условиям: l || BC, l пересекает треугольник ABC; отрезок прямой l, заключённый внутри треугольника, виден из точки M под прямым углом.
Медиана AM и биссектриса CD прямоугольного треугольника ABC (∠B = 90°) пересекаются в точке O.
Найдите площадь треугольника ABC, если CO = 9, OD = 5.
Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 245]