ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что при a, b, c имеет место неравенство  

   Решение

Задачи

Страница: << 122 123 124 125 126 127 128 >> [Всего задач: 5977]      



Задача 30903

Темы:   [ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 7,8

При каких натуральных n выполняется неравенство  2n ≥ n³?

Прислать комментарий     Решение

Задача 30904

Темы:   [ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 6,7

Докажите, что для любого натурального n выполняется неравенство  3n > n·2n.

Прислать комментарий     Решение

Задача 30906

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 6,7

Произведение положительных чисел a1, a2, ..., an равно 1. Докажите, что  (1 + a1)(1 + a2)...(1 + an) ≥ 2n.

Прислать комментарий     Решение

Задача 30917

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7

Существует ли набор чисел, сумма которых равна 1, а сумма их квадратов меньше 0,01?

Прислать комментарий     Решение

Задача 30923

Темы:   [ Алгебраические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 6,7

Докажите, что для любого x выполнено неравенство  x4x³ + 3x² – 2x + 2 ≥ 0.

Прислать комментарий     Решение

Страница: << 122 123 124 125 126 127 128 >> [Всего задач: 5977]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .