ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 1111]      



Задача 35470

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 7,8,9

Студент за 5 лет учения сдал 31 экзамен. В каждом следующем году он сдавал больше экзаменов, чем в предыдущем, а на пятом курсе сдал втрое больше экзаменов, чем на первом курсе. Сколько экзаменов он сдал на четвёртом курсе?

Прислать комментарий     Решение

Задача 35655

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

На контрольной работе учитель дал пять задач и ставил за контрольную оценку, равную количеству решённых задач. Все ученики, кроме Пети, решили одинаковое число задач, а Петя – на одну больше. Первую задачу решили 9 человек, вторую – 7 человек, третью – 5 человек, четвёртую – 3 человека, пятую – один человек. Сколько четвёрок и пятерок было получено на контрольной?

Прислать комментарий     Решение

Задача 36045

Тема:   [ Задачи на движение ]
Сложность: 3
Классы: 6,7

Группа туристов должна была прибыть на вокзал в 5 часов. К этому времени с турбазы за ними должен был прийти автобус. Однако, прибыв на вокзал в 3:10, туристы пошли пешком на турбазу. Встретив на дороге автобус, они сели в него и прибыли на турбазу на 20 минут раньше предусмотренного времени. С какой скоростью шли туристы до встречи с автобусом, если скорость автобуса 60 км/ч?

Прислать комментарий     Решение

Задача 58170

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Инварианты ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9

Дана шахматная доска. Разрешается перекрашивать в другой цвет сразу все клетки какой-либо горизонтали или вертикали.
Может ли при этом получиться доска, у которой ровно одна чёрная клетка?

Прислать комментарий     Решение

Задача 60355

Тема:   [ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 7,8

Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?

Прислать комментарий     Решение

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 1111]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .