ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 1111]      



Задача 65134

Тема:   [ Задачи на движение ]
Сложность: 4-
Классы: 6,7

Кабинки горнолыжного подъёмника занумерованы подряд числами от 1 до 99. Игорь сел в кабинку №42 подъёмника у подножия горы и в какой-то момент заметил, что он поравнялся с движущейся вниз кабинкой №13 (см. рисунок), а через 15 секунд его кабинка поравнялась с кабинкой №12.
Через какое время Игорь прибудет на вершину горы?

Прислать комментарий     Решение

Задача 65145

Темы:   [ Турниры и турнирные таблицы ]
[ Теория алгоритмов ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4-
Классы: 6,7

Автор: Фольклор

Среди 25 жирафов, каждые два из которых различного роста, проводится конкурс "Кто выше?". За один раз на сцену выходят пять жирафов, а жюри справедливо (согласно росту) присуждает им места с первого по пятое. Каким образом надо организовать выходы жирафов, чтобы после семи выходов определить первого, второго и третьего призёров конкурса?

Прислать комментарий     Решение

Задача 65178

Темы:   [ Турниры и турнирные таблицы ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 9,10,11

В турнире участвовало 11 шахматистов: 4 – из России и 7 зарубежных. Каждый шахматист сыграл с каждым по две партии (выигрыш – 1 очко, ничья – 0,5 очка, поражение – 0). По окончании турнира оказалось, что все участники набрали различное количество очков, причем сумма очков, набранных россиянами, равна сумме очков, набранных иностранцами. Могло ли в тройке призеров не оказаться ни одного россиянина?

Прислать комментарий     Решение

Задача 65198

Темы:   [ Турниры и турнирные таблицы ]
[ Средние величины ]
Сложность: 4-
Классы: 9,10

В турнире по футболу участвует 2n команд  (n > 1).  В каждом туре команды разбиваются на n пар и команды в каждой паре играют между собой. Так провели  2n – 1  тур, по окончании которых каждая команда сыграла с каждой ровно один раз. За победу давалось 3 очка, за ничью – 1, за поражение – 0 очков. Оказалось, что для каждой команды отношение набранных ею очков к количеству сыгранных ею игр после последнего тура не изменилось. Докажите, что все команды сыграли вничью все партии.

Прислать комментарий     Решение

Задача 65209

Темы:   [ Задачи на смеси и концентрации ]
[ Линейные рекуррентные соотношения ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4-
Классы: 10,11

У Ивана-царевича есть два сосуда емкостью по 1 л, один из которых полностью заполнен обычной водой, а в другом находится a л живой воды,
0 < a < 1.  Он может переливать только из сосуда в сосуд любой объем жидкости до любого уровня без переполнений и хочет за конечное число таких переливаний получить 40-процентный раствор живой воды в одном из сосудов. При каких значениях a Иван-царевич сможет это сделать? Считайте, что уровень жидкости в каждом из сосудов можно точно измерить в любой момент времени.

Прислать комментарий     Решение

Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 1111]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .