Страница:
<< 133 134 135 136
137 138 139 >> [Всего задач: 1111]
|
|
Сложность: 4 Классы: 8,9,10
|
Клетки шахматной доски 8×8 как-то занумерованы числами от 1 до 32, причём каждое число использовано дважды. Докажите, что можно так выбрать 32 клетки, занумерованные разными числами, что на каждой вертикали и на каждой горизонтали найдётся хотя бы по одной выбранной клетке.
|
|
Сложность: 4 Классы: 7,8,9
|
а) Докажите, что если в 3n клетках таблицы 2n×2n расставлены 3n звёздочек, то можно вычеркнуть n столбцов и n строк так, что все звёздочки будут вычеркнуты.
б) Докажите, что в таблице 2n×2n можно расставить 3n + 1 звёздочку так, что при вычеркивании любых n строк и любых n столбцов остаётся невычеркнутой хотя бы одна звёздочка.
|
|
Сложность: 4 Классы: 8,9,10
|
В прямоугольной таблице m строк и n столбцов (m < n). В некоторых клетках таблицы стоят звёздочки, так что в каждом столбце стоит хотя бы одна звёздочка. Докажите, что существует хотя бы одна такая звёздочка, что в одной строке с нею находится больше звёздочек, чем с нею в одном столбце.
Можно ли в таблицу 4×4 расставить такие натуральные числа, что одновременно выполняются следующие условия:
1) произведения чисел, стоящих в одной строке, одинаковы для всех строк;
2) произведения чисел, стоящих в одном столбце, одинаковы для всех столбцов;
3) среди чисел нет равных;
4) все числа не больше 100?
Дана таблица n×n, заполненная числами по следующему правилу: в клетке, стоящей в i-й строке и j-м столбце таблицы записано число
В таблице зачеркнули n чисел таким образом, что никакие
два зачёркнутых числа не находятся в одном столбце или в одной строке.
Докажите, что сумма зачёркнутых чисел не меньше 1.
Страница:
<< 133 134 135 136
137 138 139 >> [Всего задач: 1111]