Страница:
<< 130 131 132 133
134 135 136 >> [Всего задач: 1111]
|
|
Сложность: 4 Классы: 7,8,9
|
В квадратной таблице 4×4 расставлены числа 1, 2, 3, ..., 16 так, что сумма четырёх чисел в каждой строке, в каждом столбце и на каждой из двух диагоналей равна одному и тому же числу, причём числа 1 и 16 стоят в противоположных углах таблицы. Докажите, что в этом "магическом квадрате" сумма любых двух чисел, расположенных симметрично относительно центра квадрата, одна и та же.
|
|
Сложность: 4 Классы: 8,9,10
|
В прямоугольную таблицу из m строк и n столбцов записаны mn положительных чисел. Найдём в каждом столбце произведение чисел и сложим все n таких произведений. Докажите, что если переставить числа в каждой строке в порядке возрастания, то сумма аналогичных произведений будет не меньше, чем в первоначальной. Решите эту задачу для
а) m = n = 2;
б) m = 2 и произвольного n;
в) любых натуральных m и n.
|
|
Сложность: 4 Классы: 9,10,11
|
Король обошёл шахматную доску, побывав на каждом поле ровно один раз и вернувшись последним ходом на исходное поле. (Король ходит по обычным правилам: за один ход он может перейти по горизонтали, вертикали или диагонали на любое соседнее поле.) Когда нарисовали его путь, последовательно соединив центры полей, которые он проходил, получилась замкнутая ломаная без самопересечений. Какую наименьшую и какую наибольшую длину может она иметь? (Сторона клетки равна единице.)
|
|
Сложность: 4 Классы: 9,10,11
|
Какое наибольшее количество а) ладей; б) ферзей можно расставить на шахматной доске 8×8 так, чтобы каждая из этих фигур была под ударом не более чем одной из остальных?
|
|
Сложность: 4 Классы: 7,8,9
|
В углу шахматной доски стоит фигура. Первый игрок может ходить ею два раза подряд как обычным конём (на два поля в одном направлении и на одно – в перпендикулярном), а второй – один раз как конём с удлинённым ходом (на три поля в одном направлении и на одно – в перпендикулярном). Так они ходят по очереди. Первый стремится к тому, чтобы поставить фигуру в противоположный угол, а второй – ему помешать. Кто из них выигрывает (размеры доски – n×n, где n > 3)?
Страница:
<< 130 131 132 133
134 135 136 >> [Всего задач: 1111]