ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 189 190 191 192 193 194 195 >> [Всего задач: 1111]      



Задача 103880

Темы:   [ Классическая комбинаторика (прочее) ]
[ Турниры и турнирные таблицы ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Автор: Иванова Е.

В шахматном турнире на звание мастера спорта участвовало 12 человек, каждый сыграл с каждым по одной партии. За победу в партии даётся 1 очко, за ничью – 0,5 очка, за поражение – 0 очков. По итогам турнира звание мастера спорта присваивали, если участник набрал более 70% от числа очков, получаемых в случае выигрыша всех партий. Могли ли получить звание мастера спорта
  а) 7 участников;
  б) 8 участников?

Прислать комментарий     Решение

Задача 109465

Темы:   [ Задачи на движение ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 7,8,9

Мальчик стоит на автобусной остановке и мёрзнет, а автобуса нет. Ему хочется пройтись до следующей остановки. Мальчик бегает вчетверо медленнее автобуса и может увидеть автобус на расстоянии 2 км. До следующей остановки ровно километр. Имеет ли смысл идти, или есть риск упустить автобус?

Прислать комментарий     Решение

Задача 54690

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Задачи на проценты и отношения ]
Сложность: 4-
Классы: 8,9

Точка M лежит вне окружности радиуса R и удалена от центра на расстояние d. Докажите, что для любой прямой, проходящей через точку M и пересекающей окружность в точках A и B, произведение MA . MB одно и то же. Чему оно равно?

Прислать комментарий     Решение


Задача 30828

Темы:   [ Ориентированные графы ]
[ Турниры и турнирные таблицы ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 6,7

20 команд сыграли круговой турнир по волейболу.
Докажите, что команды можно занумеровать числами от 1 до 20 так, что 1-я команда выиграла у 2-й, 2-я – у 3-й, ..., 19-я – у 20-й.

Прислать комментарий     Решение

Задача 31373

Темы:   [ Ориентированные графы ]
[ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
Сложность: 4-
Классы: 6,7,8,9

12 шахматистов сыграли турнир в один круг. Потом каждый из них написал 12 списков. В первом только он, в (k+1)-м – те, кто были в k-м и те, у кого они выиграли. Оказалось, что у каждого шахматиста 12-й список отличается от 11-го. Сколько было ничьих?

Прислать комментарий     Решение

Страница: << 189 190 191 192 193 194 195 >> [Всего задач: 1111]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .