ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 132]      



Задача 110483

Темы:   [ Прямоугольные параллелепипеды ]
[ Боковая поверхность параллелепипеда ]
[ Сфера, описанная около призмы ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

В сферу радиуса    вписан параллелепипед, объём которого равен 8. Найдите площадь полной поверхности параллелепипеда.

Прислать комментарий     Решение

Задача 110484

Темы:   [ Прямоугольные параллелепипеды ]
[ Боковая поверхность параллелепипеда ]
[ Сфера, описанная около призмы ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

В сферу радиуса 1 вписан параллелепипед, объём которого равен  .  Найдите площадь полной поверхности параллелепипеда.

Прислать комментарий     Решение

Задача 87071

Темы:   [ Развертка помогает решить задачу ]
[ Кратчайший путь по поверхности ]
[ Правильная призма ]
Сложность: 4
Классы: 8,9

Сторона основания правильной треугольной призмы равна a , боковое ребро равно b . Найдите кратчайшее расстояние по поверхности призмы между вершиной одного основания и серединой противоположной ей стороны другого основания.
Прислать комментарий     Решение


Задача 108850

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Правильная призма ]
Сложность: 4
Классы: 8,9

Объём правильной четырёхугольной пирамиды равен V , угол между боковым ребром и плоскостью основания равен 30o . Рассматриваются правильные треугольные призмы, вписанные в пирамиду так, что одно из боковых рёбер лежит на диагонали основания пирамиды, одна из боковых граней параллельна основанию пирамиды, и вершины этой грани лежат на боковых гранях пирамиды. Найдите: а) объём той призмы, плоскость боковой грани которой делит высоту пирамиды в отношении 2:3, считая от вершины; б) наибольшее значение объёма рассматриваемых призм.
Прислать комментарий     Решение


Задача 108851

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Правильная призма ]
Сложность: 4
Классы: 8,9

Высота правильной треугольной пирамиды равна высоте её основания, объём пирамиды равен V . Рассматриваются правильные треугольные призмы, вписанные в пирамиду так, что боковое ребро лежит на высоте основания пирамиды, противоположная этому ребру боковая грань параллельна основанию пирамиды, и вершины этой грани лежат на боковой поверхности пирамиды. Найдите: а) объём той призмы, плоскость боковой грани которой делит высоту пирамиды в отношении 3:1, считая от вершины пирамиды; б) наибольшее значение объёма рассматриваемых призм.
Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .