ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На доске написаны четыре попарно различных целых числа, модуль каждого из которых больше миллиона. Известно, что не существует натурального числа, большего 1, на которое бы делилось каждое из четырёх написанных чисел. Петя записал в тетрадку шесть попарных сумм этих чисел, разбил эти шесть сумм на три пары и перемножил числа в каждой паре. Могли ли все три произведения оказаться равными?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 398]      



Задача 109417

Темы:   [ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
Сложность: 2
Классы: 10,11

Найдите объём правильной треугольной пирамиды с высотой h и углом α бокового ребра с плоскостью основания.
Прислать комментарий     Решение


Задача 110340

Темы:   [ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
Сложность: 2
Классы: 10,11

Найдите объём правильной четырёхугольной пирамиды со стороной основания a и углом α бокового ребра с плоскостью основания.
Прислать комментарий     Решение


Задача 110341

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 2
Классы: 10,11

Найдите объём правильной четырёхугольной пирамиды со стороной основания a и углом β боковой грани с плоскостью основания.
Прислать комментарий     Решение


Задача 110345

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 2
Классы: 10,11

Найдите объём правильной четырёхугольной пирамиды с боковым ребром b и углом β боковой грани с плоскостью основания.
Прислать комментарий     Решение


Задача 110349

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 2
Классы: 10,11

Найдите объём правильной четырёхугольной пирамиды с высотой h и углом β боковой грани с плоскостью основания.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 398]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .