ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 398]      



Задача 111278

Темы:   [ Правильная пирамида ]
[ Теорема синусов ]
Сложность: 4
Классы: 10,11

В правильной треугольной пирамиде SABC ( S – вершина) точки D и E являются серединами рёбер AC и BC соответственно. Через точку E проведена плоскость β , пересекающая рёбра AB и SB и удалённая от точек D и B на одинаковое расстояние, равное . Найдите длины отрезков, на которые плоскость делит ребро SB , если BC=4 , SC=3 .
Прислать комментарий     Решение


Задача 111279

Темы:   [ Правильная пирамида ]
[ Теорема синусов ]
Сложность: 4
Классы: 10,11

В правильной четырёхугольной пирамиде SABCD ( S – вершина) AD= и SD=1 . Через точку B проведена плоскость α , пересекающая ребро SC и удалённая от точек A и C на одинаковое расстояние, равное . Найдите длины отрезков, на которые плоскость α делит ребро SC , если известно, что α не параллельна прямой AC .
Прислать комментарий     Решение


Задача 111280

Темы:   [ Правильная пирамида ]
[ Теорема синусов ]
Сложность: 4
Классы: 10,11

В правильной треугольной пирамиде SABC ( S – вершина) точки K и L являются серединами рёбер AB и AC соответственно. Через точку L проведена плоскость β , пересекающая рёбра BC и SC и удалённая от точек K и C на одинаковое расстояние, равное . Найдите длины отрезков, на которые плоскость β делит ребро SC , если AB= , SB= .
Прислать комментарий     Решение


Задача 111281

Темы:   [ Правильная пирамида ]
[ Теорема синусов ]
Сложность: 4
Классы: 10,11

В правильной четырёхугольной пирамиде SABCD ( S – вершина) AB=5 и SA=4 . Через точку A проведена плоскость α , пересекающая ребро SD и удалённая от точек B и D на одинаковое расстояние, равное . Найдите длины отрезков, на которые плоскость α делит ребро SD , если известно, что α не параллельна прямой BD .
Прислать комментарий     Решение


Задача 111304

Темы:   [ Правильная пирамида ]
[ Площадь сечения ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде ABCD угол ADC равен 2 arcsin , а сторона основания ABC равна 2. Точки K , M и N – середины рёбер AB , CD , AC соответственно. Точка E лежит на отрезке KM и 3ME=KE . Через точку E проходит плоскость Π перпендикулярно отрезку KM . В каком отношении плоскость Π делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью Π и расстояние от точки N до плоскости Π .
Прислать комментарий     Решение


Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 398]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .