ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 398]      



Задача 87317

Темы:   [ Сфера, вписанная в двугранный угол ]
[ Правильная пирамида ]
Сложность: 3
Классы: 10,11

Дана правильная треугольная пирамида SABC ( S – вершина) со стороной основания a и боковым ребром a . Сфера проходит через точку A и касается боковых ребер SB и SC в их серединах. Найдите радиус сферы.
Прислать комментарий     Решение


Задача 87435

Темы:   [ Объем тетраэдра и пирамиды ]
[ Правильная пирамида ]
Сложность: 3
Классы: 10,11

Боковое ребро правильной треугольной пирамиды наклонено к плоскости основания под углом 45o . Найдите сторону основания, если объём пирамиды равен 18.
Прислать комментарий     Решение


Задача 109274

Темы:   [ Касающиеся сферы ]
[ Правильная пирамида ]
Сложность: 3
Классы: 10,11

Сторона основания правильной четырёхугольной пирамиды равна a . Центры двух шаров радиуса r , содержащихся внутри пирамиды, расположены на её высоте. Первый шар касается плоскости основания пирамиды, второй шар касается первого и плоскостей всех боковых граней пирамиды. Найдите высоту пирамиды.
Прислать комментарий     Решение


Задача 110303

Темы:   [ Кратчайший путь по поверхности ]
[ Правильная пирамида ]
[ Развертка помогает решить задачу ]
Сложность: 3
Классы: 10,11

Боковое ребро правильной четырёхугольной пирамиды равно b , а плоский угол при вершине равен α . Найдите длину кратчайшего замкнутого пути по поверхности пирамиды, начинающегося и заканчивающегося в вершине основания и пересекающего все боковые рёбра пирамиды.
Прислать комментарий     Решение


Задача 111109

Темы:   [ Объем параллелепипеда ]
[ Правильная пирамида ]
Сложность: 3
Классы: 10,11

Основания параллелепипеда – квадраты со стороной b , а все боковые грани – ромбы. Одна из вершин верхнего основания одинаково удалена от всех вершин нижнего основания. Найдите объём параллелепипеда.
Прислать комментарий     Решение


Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 398]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .