ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58227
Тема:    [ Равносоставленные фигуры ]
Сложность: 6
Классы: 8,9
В корзину
Прислать комментарий

Условие

а) Докажите, что любой многоугольник можно разрезать на части и сложить из них прямоугольник со стороной 1.
б) Даны два многоугольника равной площади. Докажите, что первый многоугольник можно разрезать на части и сложить из них второй.

Решение

а) Для решения этой задачи нужно воспользоваться результатами задач 22.22, 25.1 и 25.7. Сначала разрезаем многоугольник непересекающимися диагоналями на треугольники. Каждый из этих треугольников разрезаем на части и складываем из них прямоугольник. Полученные прямоугольники разрезаем на части и складываем из них прямоугольники со стороной 1. Ясно, что из нескольких прямоугольников со стороной 1 можно сложить один прямоугольник со стороной 1.
б) Разрежем первый многоугольник на части и сложим из них прямоугольник со стороной 1. Так как второй многоугольник можно разрезать на части и сложить из них этот прямоугольник, то и прямоугольник можно разрезать на части и сложить из них второй многоугольник (при этом части, на которые был разрезан первый многоугольник, будут разрезаны на более мелкие части).


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 25
Название Разрезания, разбиения, покрытия
Тема Разрезания, разбиения, покрытия и замощения
параграф
Номер 1
Название Равносоставленные фигуры
Тема Равносоставленные фигуры
задача
Номер 25.008

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .