Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 77]
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дан правильный 2n-угольник.
Докажите, что на всех его сторонах и диагоналях можно расставить стрелки так, чтобы сумма полученных векторов была нулевой.
|
|
Сложность: 4- Классы: 9,10,11
|
Все стороны и диагонали правильного 12-угольника раскрашиваются в 12 цветов (каждый отрезок – одним цветом).
Существует ли такая раскраска, что для любых трёх цветов найдутся три вершины, попарно соединенные между собой отрезками этих цветов?
|
|
Сложность: 4- Классы: 7,8,9
|
Найдите все такие пары простых чисел p и q, что p³ – q5 = (p + q)².
|
|
Сложность: 4- Классы: 7,8,9
|
Докажите, что каждое натуральное число является разностью двух натуральных
чисел, имеющих одинаковое количество простых делителей.
(Каждый простой делитель учитывается один раз, например, число 12 имеет два простых делителя: 2 и 3.)
|
|
Сложность: 4- Классы: 7,8,9
|
Даны числа 1, 2, ..., N, каждое из которых окрашено либо в чёрный, либо в белый цвет. Разрешается перекрашивать в противоположный цвет любые три числа, одно из которых равно полусумме двух других. При каких N всегда можно сделать все числа белыми?
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 77]