Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 77]
|
|
Сложность: 3+ Классы: 7,8,9
|
Существуют ли 100 таких натуральных чисел, что их сумма равна их наименьшему
общему кратному?
(Среди чисел могут быть равные.)
|
|
Сложность: 3+ Классы: 7,8,9
|
Можно ли вычеркнуть из произведения 1!·2!·3!·...·100! один из факториалов так, чтобы произведение оставшихся было квадратом целого числа?
В треугольнике ABC проведены биссектрисы AD и BE. Известно, что DE – биссектриса угла ADC. Найдите величину угла A.
|
|
Сложность: 3+ Классы: 8,9,10
|
Натуральные числа m и n таковы, что НОК(m, n) + НОД(m, n) = m + n. Докажите, что одно из чисел m или n делится на другое.
|
|
Сложность: 3+ Классы: 5,6,7
|
Можно ли 100 гирь массами 1, 2, 3, ..., 99, 100 разложить на 10 кучек разной массы так, чтобы выполнялось условие: чем тяжелее кучка, тем меньше в ней гирь?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 77]