Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 316]
|
|
Сложность: 4- Классы: 8,9,10
|
В игре "Десант" две армии захватывают страну. Они ходят по очереди, каждым ходом занимая один из свободных городов. Первый свой город армия захватывает с воздуха, а каждым следующим ходом она может захватить любой город, соединённый дорогой с каким-нибудь уже занятым этой армией городом. Если таких городов нет, армия прекращает боевые действия (при этом, возможно, другая армия свои действия продолжает). Найдётся ли такая схема городов и дорог, что армия, ходящая второй, сможет захватить более половины всех городов, как бы ни действовала первая армия? (Число городов конечно, каждая дорога соединяет ровно два города.)
|
|
Сложность: 4- Классы: 9,10,11
|
Каждый зритель, купивший билет в первый ряд кинотеатра, занял одно из мест в первом ряду. Оказалось, что все места в первом ряду заняты, но каждый зритель сидит не на своём месте. Билетёр может менять местами соседей, если оба сидят не на своих местах. Всегда ли он может рассадить всех на свои места?
На сторонах BC, CA и AB треугольника ABC выбраны
соответственно точки A1, B1 и C1, причём медианы A1A2, B1B2 и C1C2 треугольника A1B1C1 соответственно параллельны прямым AB, BC и CA. В каком отношении точки A1, B1 и C1
делят стороны треугольника ABC?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Попав в новую компанию, Чичиков узнавал, кто с кем знаком. А чтобы запомнить это, он рисовал окружность и изображал каждого члена компании хордой, причём хорды знакомых между собой пересекались, а незнакомых – нет. Чичиков уверен, что такой набор хорд есть для любой компании. Прав ли он? (Совпадение концов хорд считается пересечением.)
|
|
Сложность: 4- Классы: 9,10,11
|
В числе a = 0,12457... n-я цифра после запятой равна цифре слева от запятой в числе
Докажите, что α –
иррациональное число.
Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 316]