Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 378]
|
|
Сложность: 3+ Классы: 6,7,8
|
Али-Баба и 40 разбойников делят добычу. Делёж считается справедливым, если любым 30 участникам достаётся в сумме не менее половины добычи. Какая наибольшая доля может достаться Али-Бабе при справедливом дележе?
|
|
Сложность: 3+ Классы: 6,7,8
|
В комнате у Папы Карло на каждой стене висят часы, причём они все показывают неверное время: первые часы ошибаются на 2 минуты, вторые – на 3 минуты,
третьи – на 4 минуты и четвёртые – на 5 минут. Однажды Папа Карло, выходя на улицу, решил узнать точное время и увидел такие показания часов: 14:54, 14:57, 15:02 и 15:03. Помогите Папе Карло определить точное время.
На кружок пришли четыре мальчика из 7А и четыре – из 7Б: три Лёши, три Вани и два Артёма.
Могло ли оказаться так, что у каждого из них есть хотя бы один тёзка-одноклассник, пришедший на кружок?
Дана равнобокая трапеция ABCD с основаниями BC и AD. В треугольники ABC и ABD вписаны окружности с центрами O1 и O2.
Докажите, что прямая O1O2 перпендикулярна BC.
|
|
Сложность: 3+ Классы: 10,11
|
Существует ли треугольная пирамида, среди шести рёбер которой:
а) два ребра по длине меньше 1 см, а остальные четыре – больше 1 км?
б) четыре ребра по длине меньше 1 см, а остальные два – больше 1 км?
Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 378]