ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Фольклор

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 378]      



Задача 97787

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Несколько фишек двух цветов расположены в ряд (встречаются оба цвета). Известно, что фишки, между которыми 10 или 15 фишек, одинаковы.
Какое наибольшее число фишек может быть?

Прислать комментарий     Решение

Задача 97791

Темы:   [ Остовы многогранных фигур ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

Существует ли многогранник (не обязательно выпуклый), полных список рёбер которого имеет вид: AB, AC, BC, BD, CD, DE, EF, EG, FG, FH, GH, AH (на рисунке приведена схема соединения рёбер)?

Прислать комментарий     Решение

Задача 97822

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Через P(x) обозначается произведение всех цифр натурального числа x, через S(x) – сумма цифр числа x.
Сколько решений имеет уравнение:   P(P(x)) + P(S(x)) + S(P(x)) + S(S(x)) = 1984 ?

Прислать комментарий     Решение

Задача 97857

Темы:   [ Турниры и турнирные таблицы ]
[ Правило произведения ]
[ Принцип Дирихле (прочее) ]
[ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

На фестивале камерной музыки собралось шесть музыкантов. На каждом концерте часть музыкантов выступает, а остальные слушают их из зала. За какое наименьшее число концертов каждый из шести музыкантов сможет послушать (из зала) всех остальных?

Прислать комментарий     Решение

Задача 97942

Темы:   [ Выигрышные и проигрышные позиции ]
[ Деление с остатком ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом увеличении разность между новым и старым значениями числа была бы больше нуля, но меньше старого значения. Начальное значение числа равно 2. Выигравшим считается тот, в результате хода которого получится 1987. Кто выигрывает при правильной игре: начинающий или его партнёр?

Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 378]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .