ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Фольклор

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 378]      



Задача 116741

Темы:   [ Правильный (равносторонний) треугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

На стороне ВС равностороннего треугольника АВС отмечены точки K и L так, что  BK = KL = LC,  а на стороне АС отмечена точка М так,
что  АМ = ⅓ AC.  Найдите сумму углов AKM и ALM.

Прислать комментарий     Решение

Задача 116742

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

Натуральные числа а, b, c и d таковы, что  ab = cd.  Может ли число  a + b + c + d  оказаться простым?

Прислать комментарий     Решение

Задача 116815

Темы:   [ Неравенство треугольника (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

Верно ли, что в вершинах любого треугольника можно расставить положительные числа так, чтобы сумма чисел в концах каждой стороны треугольника равнялась длине этой стороны?

Прислать комментарий     Решение

Задача 116888

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

На шахматную доску поставлены 11 коней так, что никакие два не бьют друг друга.
Докажите, что на ту же доску можно поставить ещё одного коня с сохранением этого свойства.

Прислать комментарий     Решение

Задача 116889

Темы:   [ Исследование квадратного трехчлена ]
[ Теорема о промежуточном значении. Связность ]
[ Приложения интеграла (прочее) ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

Коэффициенты квадратного уравнения  ax² + bx + c = 0  удовлетворяют условию  2a + 3b + 6c = 0.
Докажите, что это уравнение имеет корень на интервале  (0, 1).

Прислать комментарий     Решение

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 378]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .