ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Волченков С.Г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 115366

Темы:   [ Задачи на движение ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4
Классы: 8,9,10

Семь лыжников с номерами 1, 2, ... , 7 ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Оказалось, что каждый лыжник ровно дважды участвовал в обгонах. (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.) По окончании забега должен быть составлен протокол, состоящий из номеров лыжников в порядке финиширования. Докажите, что в забеге с описанными свойствами может получиться не более двух различных протоколов.

Прислать комментарий     Решение

Задача 109692

Темы:   [ Рекуррентные соотношения (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Числа Фибоначчи ]
[ Ограниченность, монотонность ]
[ Монотонность и ограниченность ]
Сложность: 4+
Классы: 9,10,11

Найдите все бесконечные ограниченные последовательности натуральных чисел a1, a2, a3, ..., для всех членов которых, начиная с третьего, выполнено

Прислать комментарий     Решение

Задача 110184

Темы:   [ Геометрия на клетчатой бумаге ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Перенос помогает решить задачу ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 9,10,11

На клетчатой бумаге нарисован прямоугольник, стороны которого образуют углы в 45° с линиями сетки, а вершины не лежат на линиях сетки.
Может ли каждую сторону прямоугольника пересекать нечётное число линий сетки?

Прислать комментарий     Решение

Задача 111808

Темы:   [ Средние величины ]
[ Принцип крайнего (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4+
Классы: 8,9,10

На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.
Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?

Прислать комментарий     Решение

Задача 109678

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
[ Перебор случаев ]
Сложность: 5-
Классы: 7,8,9

Обозначим S(x) сумму цифр числа x . Найдутся ли три таких натуральных числа a , b и c , что S(a+b)<5 , S(a+c)<5 и S(b+c)<5 , но S(a+b+c)>50 ?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .