Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 48]
|
|
Сложность: 3+ Классы: 8,9,10
|
На плоскости дан квадрат 8×8, разбитый на клеточки 1×1. Его покрывают прямоугольными равнобедренными треугольниками (два треугольника закрывают одну клетку). Имеется 64 черных и 64 белых треугольника. Рассматриваются "правильные" покрытия – такие, что каждые два треугольника, имеющие общую сторону, разного цвета. Сколько существует правильных покрытий?
|
|
Сложность: 3+ Классы: 10,11
|
Покажите, как разбить пространство
а) на одинаковые тетраэдры,
б) на одинаковые равногранные тетраэдры
(тетраэдр называется равногранным, если все его грани – равные треугольники).
|
|
Сложность: 3+ Классы: 10,11
|
На плоскости даны три точки A, B, C. Через точку C проведите прямую так, чтобы произведение расстояний от этой прямой до A и B было максимальным. Всегда ли такая прямая единственна?
|
|
Сложность: 3+ Классы: 7,8,9
|
Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины
которых лежат на окружности.
а) Нарисуйте такую ломаную, которая имеет наибольшее возможное
число точек самопересечения.
б) Докажите, что большего числа самопересечений такая ломаная не
может иметь.
а) Может ли случиться, что в компании из 10 девочек и 9 мальчиков все девочки знакомы с разным числом мальчиков, а все мальчики – с одним и тем же числом девочек?
б) А если девочек 11, а мальчиков 10?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 48]