Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 48]
|
|
Сложность: 3+ Классы: 10,11
|
Пусть A', B', C', D', E', F' – середины сторон AB, BC, CD, DE, EF, FA произвольного выпуклого шестиугольника ABCDEF. Известны площади треугольников ABC', BCD', CDE', DEF', EFA', FAB'. Найдите площадь шестиугольника ABCDEF.
|
|
Сложность: 3+ Классы: 7,8,9
|
Докажите, что уравнение x² + y² + z² = x³ + y³ + z³ имеет бесконечное число решений в целых числах x, y, z.
С помощью циркуля и линейки постройте треугольник ABC, если заданы
его наименьший угол при вершине A и отрезки d = AB – BC и e = AC – BC.
|
|
Сложность: 4- Классы: 8,9,10
|
а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же.
б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие?
Выпуклые четырёхугольники ABCD и PQRS вырезаны соответственно из бумаги и картона. Будем говорить, что они подходят друг к другу, если выполняются два условия:
1) картонный четырёхугольник можно наложить на бумажный так, что его вершины попадут на стороны бумажного, по одной вершине на каждую сторону;
2) если после этого перегнуть четыре образовавшихся маленьких бумажных треугольника на картонный, то они закроют весь картонный четырёхугольник в один слой.
а) Докажите, что, если четырёхугольники подходят друг к другу, то у бумажного либо две противоположные стороны параллельны,
либо диагонали перпендикулярны.
б) Докажите, что если ABCD – параллелограмм, то можно сделать подходящий к нему картонный четырёхугольник.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 48]