Страница:
<< 4 5 6 7 8 9 10 [Всего задач: 48]
|
|
Сложность: 6- Классы: 8,9,10
|
При каких n правильный n-угольник можно разместить на листе бумаги в линейку так, чтобы все вершины лежали на линиях?
(Линии — параллельные прямые, расположенные на одинаковых расстояниях друг от друга.)
|
|
Сложность: 6 Классы: 10,11
|
Если на каждой грани выпуклого многогранника выбрать по точке и провести из этой точки направленный перпендикулярно соответствующей грани во внешнюю сторону вектор, длина которого равна площади этой грани, то сумма всех таких векторов окажется равна нулю. Докажите это.
|
|
Сложность: 7 Классы: 9,10,11
|
Пусть
l1,
l2, ...,
ln — несколько прямых на плоскости, не все из которых параллельны. Докажите, что можно единственным образом выбрать на каждой из этих прямых по точке
X1,
X2, ...,
Xn так, чтобы перпендикуляр, восставленный к прямой
lk в точке
Xk (для любого натурального
k < n), проходил через точку
Xk + 1, а перпендикуляр, восставленный к прямой
ln в
точке Xn, проходил через
точку X1.
Попробуйте сформулировать и доказать аналогичную теорему в пространстве.
Страница:
<< 4 5 6 7 8 9 10 [Всего задач: 48]