Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 39]
|
|
Сложность: 4 Классы: 8,9,10
|
Дано натуральное число $n > 1$. Назовём положительную обыкновенную дробь (не обязательно несократимую)
хорошей, если сумма её числителя и знаменателя равна $n$. Докажите, что любую положительную обыкновенную дробь, знаменатель которой меньше $n$, можно выразить через хорошие дроби (не обязательно различные) с помощью операций сложения и вычитания тогда и только тогда, когда $n$ — простое число.
Напомним, что обыкновенная дробь — это отношение целого числа к натуральному.
|
|
Сложность: 4 Классы: 10,11
|
Таня сделала кошелёк из двух клетчатых кусочков ткани $8\times10$, наложив их друг на друга и сшив друг с другом края обеих пар коротких сторон и нижних длинных сторон (см. рисунок, слева сплющенный кошелёк, справа приоткрытый).
Хулиган Вася сделал прямолинейный надрез на переднем слое ткани от одного узла сетки до другого. Но Таня не расстроилась, потому что смогла сложить из надрезанного кошелька кулёк (в сплющенном виде это двуслойный треугольник, не обязательно равнобедренный, нескреплённые стороны совпадают — пример кулька в сплющенном и в приоткытом виде см. на рисунке ниже).
Отметьте на рисунке-кошельке два узла сетки, между которыми мог провести надрез Вася.
|
|
Сложность: 4 Классы: 6,7,8,9
|
У Пети было 18 одинаковых по внешнему виду монет – две по 1 г, две по 2 г, две по 3 г, ..., две по 9 г. Он разложил их на подносе по кругу, как показано на рисунке. Потом поднос как-то повернули, и теперь непонятно, где какая монета. Как за два взвешивания на чашечных весах без гирь это определить?

|
|
Сложность: 4+ Классы: 9,10,11
|
Куб с ребром
2
n+1
разрезают на
кубики с ребром 1 и бруски размера
2
x 2
x 1
. Какое
наименьшее количество единичных кубиков может при этом получиться?
Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 39]