Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Пусть ABC – остроугольный треугольник, CC1 – его биссектриса, O – центр описанной окружности. Точка пересечения прямой OC1 с перпендикуляром, опущенным из вершины C на сторону AB, лежит на описанной окружности Ω треугольника AOB. Найдите угол C.
|
|
Сложность: 4- Классы: 7,8,9,10
|
В клетках квадратной таблицы 4×4 расставлены знаки + и – , как показано на рисунке.
Разрешается одновременно менять знак во всех клетках, расположенных в одной строке, в одном столбце или на прямой, параллельной какой-нибудь диагонали (в частности, можно менять знак в любой угловой клетке). Докажите, что, сколько бы мы
ни производили таких перемен знака, нам не удастся получить таблицу из одних плюсов.
|
|
Сложность: 4- Классы: 8,9,10
|
Для любого натурального числа n существует составленное из цифр 1 и 2 число, делящееся на 2n. Докажите это.
(Например, на 2 делится 2, на 4 делится 12, на 8 делится 112, на 16 делится 2112...)
|
|
Сложность: 4 Классы: 8,9,10,11
|
В куче $n$ камней, играют двое. За ход можно взять из кучи количество камней, либо равное простому делителю текущего числа камней в куче, либо равное 1. Выигрывает взявший последний камень. При каких $n$ начинающий может играть так, чтобы всегда выигрывать, как бы ни играл его соперник?
|
|
Сложность: 4 Классы: 10,11
|
Четырёхугольник ABCD вписан в окружность с центром O, причём точка O не лежит ни на одной из диагоналей этого четырёхугольника. Известно, что центр описанной окружности треугольника AOC лежит на прямой BD. Докажите, что центр описанной окружности треугольника BOD лежит на прямой AC.
Страница: 1
2 >> [Всего задач: 6]