ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Евдокимов М.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 141]      



Задача 67199

Темы:   [ Равногранный тетраэдр ]
[ Сфера, вписанная в тетраэдр ]
Сложность: 5
Классы: 10,11

Середины всех высот некоторого тетраэдра лежат на его вписанной сфере. Верно ли, что тетраэдр правильный?
Прислать комментарий     Решение


Задача 67204

Темы:   [ Обратные тригонометрические функции ]
[ Взвешивания ]
Сложность: 5
Классы: 10,11

Имеются абсолютно точные двухчашечные весы и набор из 50 гирь, веса которых равны $\operatorname{arctg} 1$, $\operatorname{arctg} \frac{1}{2}$, $\operatorname{arctg} \frac{1}{3}$, $\ldots$, $\operatorname{arctg}\frac{1}{50}$. Докажите, что можно выбрать 10 из них и разложить по 5 гирь на разные чаши весов так, чтобы установилось равновесие.
Прислать комментарий     Решение


Задача 67293

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 5
Классы: 8,9,10,11

Существует ли описанный 2021-угольник, все вершины и центр вписанной окружности которого имеют целочисленные координаты?
Прислать комментарий     Решение


Задача 109999

Темы:   [ Описанные многогранники ]
[ Ортогональная проекция (прочее) ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение ]
[ Площадь сферы и ее частей ]
Сложность: 5
Классы: 10,11

Многогранник описан около сферы. Назовем его грань большой, если проекция сферы на плоскость грани целиком попадает в грань. Докажите, что больших граней не больше 6.
Прислать комментарий     Решение


Задача 107841

Темы:   [ Инварианты ]
[ Производная в точке ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Комплексные числа помогают решить задачу ]
Сложность: 5+
Классы: 10,11

  На доске написаны три функции:  f1(x) = x + 1/x,   f2(x) = x²,   f3(x) = (x – 1)².  Можно складывать, вычитать и перемножать эти функции (в том числе возводить в квадрат, в куб, ...), умножать их на произвольное число, прибавлять к ним произвольное число, а также проделывать эти операции с полученными выражениями. Получите таким образом функцию 1/x.
  Докажите, что если стереть с доски любую из функций  f1,  f2,  f3, то получить 1/x невозможно.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 141]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .