ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Евдокимов М.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 141]      



Задача 65467

Темы:   [ Принцип крайнего (прочее) ]
[ Полуинварианты ]
Сложность: 4+
Классы: 8,9

У Деда Мороза было n сортов конфет, по k штук каждого сорта. Он распределил все конфеты как попало по k подаркам, в каждый – по n конфет, и раздал их k детям. Дети решили восстановить справедливость. Два ребёнка готовы передать друг другу по конфете, если каждый получает конфету сорта, которого у него нет. Всегда ли можно организовать серию обменов так, что у каждого окажутся конфеты всех сортов?

Прислать комментарий     Решение

Задача 65681

Темы:   [ Куб ]
[ Примеры и контрпримеры. Конструкции ]
[ Сфера, вписанная в трехгранный угол ]
[ Проектирование помогает решить задачу ]
[ Малые шевеления ]
Сложность: 4+
Классы: 9,10,11

В куб с ребром 1 поместили 8 непересекающихся шаров (возможно, разного размера). Может ли сумма диаметров этих шаров быть больше 4?

Прислать комментарий     Решение

Задача 67085

Темы:   [ Максимальное/минимальное расстояние ]
[ Стереометрия (прочее) ]
Сложность: 4+
Классы: 9,10,11

Звездолёт находится в полупространстве на расстоянии $a$ от его границы. Экипаж знает об этом, но не представляет, в каком направлении двигаться, чтобы достигнуть граничной плоскости. Звездолёт может лететь в пространстве по любой траектории, измеряя длину пройденного пути, и имеет датчик, подающий сигнал, когда граница достигнута. Может ли звездолёт гарантированно достигнуть границы, преодолев путь длиной

а) не более $14а$;

б) не более $13а$?
Прислать комментарий     Решение


Задача 108243

Темы:   [ Две касательные, проведенные из одной точки ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
[ Вспомогательная окружность ]
[ Вписанный угол равен половине центрального ]
Сложность: 4+
Классы: 8,9

В треугольник ABC вписана окружность, касающаяся сторон AB, AC и BC в точках C1, B1 и A1 соответственно. Пусть K – точка на окружности, диаметрально противоположная точке C1, D – точка пересечения прямых B1C1 и A1K. Докажите, что  CD = CB1.

Прислать комментарий     Решение

Задача 66598

Темы:   [ Сечения, развертки и остовы (прочее) ]
[ Остовы многогранных фигур ]
[ Правильные многогранники. Двойственность и взаимосвязи ]
Сложность: 4+
Классы: 10,11

Выпуклый многогранник с вершинами в серединах ребер некоторого куба называется кубооктаэдром. В сечении кубооктаэдра плоскостью получился правильный многоугольник. Какое наибольшее число сторон он может иметь?
Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 141]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .