ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Евдокимов М.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 135]      



Задача 109638

Темы:   [ Покрытия ]
[ Шахматная раскраска ]
[ Подсчет двумя способами ]
[ Геометрия на клетчатой бумаге ]
Сложность: 5-
Классы: 8,9,10

Можно ли прямоугольник $5 \times 7$ покрыть уголками из трёх клеток (т.е. фигурками, которые получаются из квадрата $2 \times 2$ удалением одной клетки), не выходящими за его пределы, в несколько слоёв так, чтобы каждая клетка прямоугольника была покрыта одинаковым числом клеток, принадлежащих уголкам?
Прислать комментарий     Решение


Задача 65472

Темы:   [ Шар и его части ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5-
Классы: 10,11

Арбуз имеет форму шара диаметра 20 см. Вася сделал длинным ножом три взаимно перпендикулярных плоских надреза глубиной h (надрез – это сегмент круга, h – высота сегмента, плоскости надрезов попарно перпендикулярны). Обязательно ли при этом арбуз разделится хотя бы на два куска, если
  а)  h = 17 см;
  б)  h = 18 см?

Прислать комментарий     Решение

Задача 67319

Темы:   [ Равногранный тетраэдр ]
[ Центр масс ]
[ Ортогональная проекция (прочее) ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 5-
Классы: 10,11

В тетраэдре $ABCD$ скрещивающиеся рёбра попарно равны. Через середину отрезка $AH_A$, где $H_A$  – точка пересечения высот грани $BCD$, провели прямую $h_A$ перпендикулярно плоскости $BCD$. Аналогичным образом определили точки $H_B$, $H_C$, $H_D$ и построили прямые $h_B$, $h_C$, $h_D$ соответственно для трёх других граней тетраэдра. Докажите, что прямые $h_A$, $h_B$, $h_C$, $h_D$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 108169

Темы:   [ Правильные многоугольники ]
[ Гомотетия помогает решить задачу ]
[ Композиции гомотетий ]
[ Поворот помогает решить задачу ]
[ Теоремы Чевы и Менелая ]
[ Теорема о группировке масс ]
Сложность: 5-
Классы: 8,9

а) Каждую сторону четырёхугольника в процессе обхода по часовой стрелке продолжили на её длину. Оказалось, что новые концы построенных отрезков служат вершинами квадрата. Докажите, что исходный четырёхугольник – квадрат.

б) Докажите, что если в результате такой же процедуры из некоторого n-угольника получается правильный n-угольник, то исходный многоугольник – правильный.

Прислать комментарий     Решение

Задача 66493

Тема:   [ Треугольники (прочее) ]
Сложность: 5
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ проведены высоты $AA_1$ и $CC_1$. Окружность, описанная вокруг треугольника $A_1BC_1$, проходит через точку $M$ пересечения медиан. Найдите все возможные значения величины угла $B$.
Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 135]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .