ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Евдокимов М.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 141]      



Задача 66086

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Куб ]
[ Сечения, развертки и остовы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

У Васи есть камень (однородный, без внутренних полостей), имеющий форму выпуклого многогранника, у которого есть только треугольные и шестиугольные грани. Вася утверждает, что он разбил этот камень на две части так, что можно сложить из них куб (без внутренних полостей). Могут ли слова Васи быть правдой?

Прислать комментарий     Решение

Задача 66118

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Куб ]
[ Сечения, развертки и остовы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Вася утверждает, что он разрезал выпуклый многогранник, у которого есть лишь треугольные и шестиугольные грани, на две части и склеил из этих частей куб. Могут ли слова Васи быть правдой?

Прислать комментарий     Решение

Задача 66278

Темы:   [ Математическая логика (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 6,7,8

Состоялся матч по футболу 10 на 10 игроков между командой лжецов (которые всегда лгут) и командой правдолюбов (которые всегда говорят правду). После матча каждого игрока спросили: "Сколько голов ты забил?" Некоторые участники матча ответили "один", Миша сказал "два", некоторые ответили "три", а остальные сказали "пять". Лжёт ли Миша, если правдолюбы победили со счётом  20 : 17?

Прислать комментарий     Решение

Задача 66713

Темы:   [ Разрезания (прочее) ]
[ Раскраски ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10,11

Клетчатый прямоугольник размера 7×14 разрезали по линиям сетки на квадраты 2×2 и уголки из трёх клеток. Могло ли квадратов получиться
  а) столько же, сколько уголков;
  б) больше, чем уголков?

Прислать комментарий     Решение

Задача 66718

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9,10,11

В параллелограмме $ABCD$ угол $A$ острый. На стороне $AB$ отмечена такая точка $N$, что  $CN = AB$.  Оказалось, что описанная окружность треугольника $CBN$ касается прямой $AD$. Докажите, что она касается её в точке $D$.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 141]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .