Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 141]
|
|
Сложность: 3+ Классы: 10,11
|
У Васи есть камень (однородный, без внутренних полостей), имеющий форму выпуклого многогранника, у которого есть только треугольные и шестиугольные грани. Вася утверждает, что он разбил этот камень на две части так, что можно сложить из них куб (без внутренних полостей). Могут ли слова Васи быть правдой?
|
|
Сложность: 3+ Классы: 10,11
|
Вася утверждает, что он разрезал выпуклый многогранник, у которого есть лишь треугольные и шестиугольные грани, на две части и склеил из этих частей куб. Могут ли слова Васи быть правдой?
|
|
Сложность: 3+ Классы: 6,7,8
|
Состоялся матч по футболу 10 на 10 игроков между командой лжецов (которые всегда лгут) и командой правдолюбов (которые всегда говорят правду). После матча каждого игрока спросили: "Сколько голов ты забил?" Некоторые участники матча ответили "один", Миша сказал "два", некоторые ответили "три", а остальные сказали "пять". Лжёт ли Миша, если правдолюбы победили со счётом 20 : 17?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Клетчатый прямоугольник размера 7×14 разрезали по линиям сетки на квадраты 2×2 и уголки из трёх клеток. Могло ли квадратов получиться
а) столько же, сколько уголков;
б) больше, чем уголков?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В параллелограмме $ABCD$ угол $A$ острый. На стороне $AB$ отмечена такая точка $N$, что $CN = AB$. Оказалось, что описанная окружность треугольника $CBN$ касается прямой $AD$. Докажите, что она касается её в точке $D$.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 141]