Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 135]
|
|
Сложность: 3 Классы: 8,9,10
|
Квадратный трёхчлен x² + bx + c имеет два действительных корня. Каждый из трёх его коэффициентов увеличили на 1.
Могло ли оказаться, что оба корня трёхчлена также увеличились на 1?
|
|
Сложность: 3 Классы: 7,8,9
|
Найдите наименьшее натуральное число, которое начинается (в десятичной записи) на 2016 и делится на 2017.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Существуют ли нецелые числа x и y, для которых {x}{y} = {x + y}?
|
|
Сложность: 3 Классы: 5,6,7
|
Ньют хочет перевезти девять фантастических тварей весом 2, 3, 4, 5, 6, 7, 8, 9 и 10 кг в трёх чемоданах, по три твари в каждом. Каждый чемодан должен весить меньше 20 кг. Если вес какой-нибудь твари будет делиться на вес другой твари из того же чемодана, они подерутся. Как Ньюту распределить тварей по чемоданам, чтобы никто не подрался?
а) Мальвина разбила каждую грань куба 2×2×2 на единичные квадраты и велела Буратино в некоторых квадратах написать крестики, а в остальных нолики так, чтобы каждый квадрат граничил по сторонам с двумя крестиками и двумя ноликами. На рисунке показано, как Буратино выполнил задание (видно только три грани). Докажите, что Буратино ошибся.
б) Помогите Буратино выполнить задание правильно. Достаточно описать хотя бы одну верную расстановку.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 135]