ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Емельянов Л.А.

Лев Александрович Емельянов - старший преподаватель Калужского государственного педагогического университета им. К.Э. Циолковского (КГПУ), член жюри Всероссийской олимпиады школьников по математике.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 87]      



Задача 110225

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 7,8,9

Медиану AA0 треугольника ABC отложили от точки A0 перпендикулярно стороне BC во внешнюю сторону треугольника. Обозначим второй конец построенного отрезка через A1. Аналогично строятся точки B1 и C1. Найдите углы треугольника A1B1C1, если углы треугольника ABC равны 30°, 30° и 120°.

Прислать комментарий     Решение

Задача 115362

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9,10

Прямые, касающиеся окружности ω в точках B и D, пересекаются в точке P. Прямая, проходящая через P, высекает на окружности хорду AC. Через точку отрезка AC проведена прямая, параллельная BD. Докажите, что она делит длины ломаных ABC и ADC в одинаковых отношениях.

Прислать комментарий     Решение

Задача 116631

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9,10

Дан остроугольный треугольник ABC. Окружность, проходящая через вершину B и центр O его описанной окружности, вторично пересекает стороны BC и BA в точках P и Q соответственно. Докажите, что ортоцентр треугольника POQ лежит на прямой AC.

Прислать комментарий     Решение

Задача 64357

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Биссектриса угла (ГМТ) ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 9,10,11

Окружность с центром I, вписанная в треугольник ABC, касается сторон BC, CA, AB в точках A1, B1, C1 соответственно. Пусть Ia, Ib, Ic – центры вневписанных окружностей треугольника ABC, касающихся соответственно сторон BC, CA, AB. Отрезки IaB1 и IbA1 пересекаются в точке C2. Аналогично отрезки IbC1 и IcB1 пересекаются в точке A2, а отрезки IcA1 и IaC1 – в точке B2. Докажите, что I является центром описанной окружности треугольника A2B2C2.

Прислать комментарий     Решение

Задача 64983

Темы:   [ Описанные четырехугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4
Классы: 10,11

Четырёхугольник ABCD описан вокруг окружности, касающейся сторон AB, BC, CD, DA в точках K, L, M, N соответственно. Точки A', B', C', D' – середины отрезков LM, MN, NK, KL. Докажите, что четырёхугольник, образованный прямыми AA', BB', CC', DD', – вписанный.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 87]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .