Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 87]
|
|
Сложность: 4- Классы: 7,8,9
|
Медиану AA0 треугольника ABC отложили от точки A0 перпендикулярно стороне BC во внешнюю сторону треугольника. Обозначим второй конец построенного отрезка через A1. Аналогично строятся точки B1 и C1. Найдите углы треугольника A1B1C1, если углы треугольника ABC равны 30°, 30° и 120°.
|
|
Сложность: 4- Классы: 8,9,10
|
Прямые, касающиеся окружности ω в точках B и D, пересекаются в точке P. Прямая, проходящая через P, высекает
на окружности хорду AC. Через точку отрезка AC проведена прямая, параллельная BD. Докажите, что она делит длины ломаных ABC и ADC в одинаковых отношениях.
|
|
Сложность: 4- Классы: 8,9,10
|
Дан остроугольный треугольник ABC. Окружность, проходящая через вершину B и центр O его описанной окружности, вторично пересекает стороны BC и BA в точках P и Q соответственно. Докажите, что ортоцентр треугольника POQ лежит на прямой AC.
|
|
Сложность: 4 Классы: 9,10,11
|
Окружность с центром I, вписанная в треугольник ABC, касается сторон BC, CA, AB в точках A1, B1, C1 соответственно. Пусть Ia, Ib, Ic – центры вневписанных окружностей треугольника ABC, касающихся соответственно сторон BC, CA, AB. Отрезки IaB1 и IbA1 пересекаются в точке C2. Аналогично отрезки IbC1 и IcB1 пересекаются в точке A2, а отрезки IcA1 и IaC1 – в точке B2. Докажите, что I является центром описанной окружности треугольника A2B2C2.
|
|
Сложность: 4 Классы: 10,11
|
Четырёхугольник ABCD описан вокруг окружности, касающейся сторон AB, BC, CD, DA в точках K, L, M, N соответственно. Точки A', B', C', D' – середины отрезков LM, MN, NK, KL. Докажите, что четырёхугольник, образованный прямыми AA', BB', CC', DD', – вписанный.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 87]