ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Женодаров Р.Г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 77]      



Задача 65557

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Какое наибольшее число коней можно расставить на шахматной доске так, чтобы каждый бил не более семи из остальных?

Прислать комментарий     Решение

Задача 65695

Темы:   [ Разбиения на пары и группы; биекции ]
[ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 9,10,11

Петя выбрал несколько последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют).
Может ли сумма наименьшего общего кратного всех красных чисел и наименьшего общего кратного всех синих чисел являться степенью двойки?

Прислать комментарий     Решение

Задача 65700

Темы:   [ Разбиения на пары и группы; биекции ]
[ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 9,10,11

Петя выбрал 10 последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют).
Может ли сумма наименьшего общего кратного всех красных чисел и наименьшего общего кратного всех синих чисел оканчиваться на 2016?

Прислать комментарий     Решение

Задача 66064

Тема:   [ Теория игр (прочее) ]
Сложность: 4-
Классы: 6,7

Два пирата, Билл и Джон, имея каждый по 74 золотые монеты, решили сыграть в такую игру: они по очереди будут выкладывать на стол монеты, за один ход – одну, две или три, а выиграет тот, кто положит на стол сотую по счёту монету. Начинает Билл. Кто может выиграть в такой игре, независимо от того, как будет действовать соперник?

Прислать комментарий     Решение

Задача 66192

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Десятичная система счисления ]
Сложность: 4-
Классы: 7,8,9,10

Петя взял 20 последовательных натуральных чисел, записал их друг за другом в некотором порядке и получил число M. Вася взял 21 последовательное натуральное число, записал их друг за другом в некотором порядке и получил число N. Могло ли случиться, что  M = N?

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 77]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .