ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Женодаров Р.Г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 77]      



Задача 109594

Темы:   [ Простые числа и их свойства ]
[ Перебор случаев ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 7,8,9

Найдите все такие простые числа p, q, r и s, что их сумма – простое число. а числа  p² + qs  и  p² + qr  – квадраты натуральных чисел. (Числа p, q, r и s предполагаются различными.)

Прислать комментарий     Решение

Задача 109875

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
Сложность: 4-
Классы: 7,8,9

Найдите все такие простые числа p, что число  p² + 11  имеет ровно шесть различных делителей (включая единицу и само число).

Прислать комментарий     Решение

Задача 109945

Темы:   [ Теория игр (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 4-
Классы: 8,9,10

В первые 1999 ячеек компьютера в указанном порядке записаны числа: 1, 2, 4, 21998 . Два программиста по очереди уменьшают за один ход на единицу числа в пяти различных ячейках. Если в одной из ячеек появляется отрицательное число, то компьютер ломается, и сломавший его оплачивает ремонт. Кто из программистов может уберечь себя от финансовых потерь независимо от ходов партнера, и как он должен для этого действовать?
Прислать комментарий     Решение


Задача 110077

Темы:   [ Задачи на проценты и отношения ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 8,9

Можно ли числа 1, 2, ..., 10 расставить в ряд в некотором порядке так, чтобы каждое из них, начиная со второго, отличалось от предыдущего на целое число процентов?

Прислать комментарий     Решение

Задача 116384

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Экстремальные свойства (прочее) ]
Сложность: 4-
Классы: 8,9

На плоскости даны 10 прямых общего положения. При каждой точке пересечения выбирается наименьший угол, образованный проходящими через неё прямыми. Найдите наибольшую возможную сумму всех этих углов.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 77]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .