Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 77]
|
|
Сложность: 3+ Классы: 7,8,9
|
Найдите все такие простые числа p и q , что p + q = (p – q)³.
Пусть a, b, c, d, e и f – некоторые числа, причём ace ≠ 0. Известно, что значения выражений |ax + b| + |cx + d| и |ex + f | равны при всех значениях x.
Докажите, что ad = bc.
|
|
Сложность: 3+ Классы: 7,8,9
|
В коммерческом турнире по футболу участвовало пять команд. Каждая должна была сыграть с каждой из остальных ровно один матч. В связи с финансовыми трудностями организаторы некоторые игры отменили. В итоге оказалось, что все команды набрали различное число очков и ни одна команда в графе набранных очков не имеет нуля. Какое наименьшее число игр могло быть сыграно в турнире, если за победу начислялось три очка, за ничью – одно, за поражение – ноль?
|
|
Сложность: 3+ Классы: 7,8,9
|
Даны 19 карточек. Можно ли на каждой из карточек написать ненулевую цифру так,
чтобы из этих карточек можно было сложить ровно одно 19-значное число, кратное на 11?
|
|
Сложность: 3+ Классы: 7,8,9
|
На доске записано произведение a1a2... a100, где a1, ..., a100 – натуральные числа. Рассмотрим 99 выражений, каждое из которых получается заменой одного из знаков умножения на знак сложения. Известно, что значения ровно 32 из этих выражений чётные. Какое наибольшее количество чётных чисел среди a1, a2, ..., a100 могло быть?
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 77]